Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat.

نویسندگان

  • Lixin Ma
  • Rukhsana Gul
  • Javad Habibi
  • Ming Yang
  • Lakshmi Pulakat
  • Adam Whaley-Connell
  • Carlos M Ferrario
  • James R Sowers
چکیده

Angiotensin II contributes to myocardial tissue remodeling and interstitial fibrosis through NADPH oxidase-mediated generation of oxidative stress in the progression of heart failure. Recent data have suggested that nebivolol, a third-generation β-blocker, improves diastolic dysfunction by targeting nitric oxide (NO) and metabolic pathways that decrease interstitial fibrosis. We sought to determine if targeting NO would improve diastolic function in a model of tissue renin-angiotensin system overactivation. We used the transgenic (TG) (mRen2)27 rat, which overexpresses the murine renin transgene and manifests insulin resistance and left ventricular dysfunction. We treated 6- to 7-wk-old TG (mRen2)27 rats and age-matched Sprague-Dawley control rats with nebivolol (10 mg·kg(-1)·day(-1)) or placebo via osmotic minipumps for a period of 21 days. Compared with Sprague-Dawley control rats, TG (mRen2)27 rats displayed a prolonged diastolic relaxation time and reduced initial filling rate associated with increased interstitial fibrosis and left ventricular hypertrophy. These findings were temporally related to increased NADPH oxidase activity and subunits p47(phox) and Rac1 and increased total ROS and peroxynitrite formation in parallel with reductions in the antioxidant heme oxygenase as well as the phosphorylation/activation of endothelial NO synthase and PKB/Akt. Treatment with nebivolol restored diastolic function and interstitial fibrosis through increases in the phosphorylation of 5'-AMP-activated protein kinase, Akt, and endothelial NO synthase and reductions in oxidant stress. These results support that targeting NO with nebivolol treatment improves diastolic dysfunction through reducing myocardial oxidative stress by enhancing 5'-AMP-activated protein kinase and Akt activation of NO biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat.

Insulin resistance is associated with obesity and may be accompanied by left ventricular diastolic dysfunction and myocardial remodeling. Decreased insulin metabolic signaling and increased oxidative stress may promote these maladaptive changes. In this context, the beta-blocker nebivolol has been reported to improve insulin sensitivity, increase endothelial NO synthase activity, and reduce NAD...

متن کامل

Mineralocorticoid receptor blockade improves diastolic function independent of blood pressure reduction in a transgenic model of RAAS overexpression.

There is emerging evidence that aldosterone can promote diastolic dysfunction and cardiac fibrosis independent of blood pressure effects, perhaps through increased oxidative stress and inflammation. Accordingly, this investigation was designed to ascertain if mineralocorticoid receptor blockade improves diastolic dysfunction independently of changes in blood pressure through actions on myocardi...

متن کامل

Nebivolol attenuates maladaptive proximal tubule remodeling in transgenic rats.

BACKGROUND/AIMS The impact of nebivolol therapy on the renal proximal tubular cell (PTC) structure and function was investigated in a transgenic (TG) rodent model of hypertension and the cardiometabolic syndrome. The TG Ren2 rat develops nephropathy with proteinuria, increased renal angiotensin II levels and oxidative stress, and PTC remodeling. Nebivolol, a beta(1)-antagonist, has recently bee...

متن کامل

Angiotensin II-mediated oxidative stress promotes myocardial tissue remodeling in the transgenic (mRen2) 27 Ren2 rat.

Angiotensin II (ANG II) contributes to cardiac remodeling, hypertrophy, and left ventricular dysfunction. ANG II stimulation of the ANG type 1 receptor (AT(1)R) generates reactive oxygen species via NADPH oxidase, which facilitates this hypertrophy and remodeling. This investigation sought to determine whether cardiac oxidative stress and cellular remodeling could be attenuated by in vivo AT(1)...

متن کامل

Effect of renin inhibition and AT1R blockade on myocardial remodeling in the transgenic Ren2 rat.

Angiotensin II (Ang II) stimulation of the Ang type 1 receptor (AT(1)R) facilitates myocardial remodeling through NADPH oxidase-mediated generation of oxidative stress. Components of the renin-angiotensin system constitute an autocrine/paracrine unit in the myocardium, including renin, which is the rate-limiting step in the generation of Ang II. This investigation sought to determine whether ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 302 11  شماره 

صفحات  -

تاریخ انتشار 2012